
Keywords: MATLAB, data collection, embedded, firmware

APPLICATION NOTE 6385

HOW TO COLLECT DATA FROM AN EMBEDDED SYSTEM FOR
USE IN MATLAB
By: Shawn Brooks

Abstract: This application note and supporting source code provide a simple portable framework for accomplishing the real-time transport
of data between the embedded system and a PC running MATLAB using a serial transport such as RS-232.

Introduction

Embedded control and measurement systems can often benefit from high-level algorithm development using tools such as MATLAB . To
accomplish this, it is necessary to export data from the embedded system to a PC. While MathWorks offers add-on packages that facilitate
embedded algorithm development, these packages can be expensive. Oftentimes, a simple way of collecting data from an embedded
system for basic analysis is all that is required.

This application note and supporting source code provides a simple portable framework for accomplishing the real-time transport of data
between the embedded system and a PC running MATLAB using a serial transport such as RS-232.

Requirements

The implementation of the architecture described in this application note has been tested on the MAX35103EVKIT2# PCB, which is part of
the MAX35103EVKIT2 EV kit software, but it can easily be ported to other platforms. The MAX35103EVKIT2 is recommended for initial
evaluation and reference.

This application note assumes that the user has a basic understanding of MATLAB, MATLAB MEX, the C language, and the Win32 API.
Experience with IAR Systems -based technologies, ARM -based systems, and Visual C++ is also helpful.

The following tools are required for full evaluation:

Maxim MAX35103EVKIT2 Evaluation Kit
Microsoft Visual C++
MATLAB (no additional packages required)
IAR Embedded Workbench for ARM

The Microsoft Visual C++ Community Edition is available for free download from the Microsoft website. IAR ARM is available for evaluation
from IAR Systems. The MAX35103EVKIT2 EV kit software is available from Maxim as well as many electronic distributors such as Digi-
Key and Mouser Electronics. MATLAB is available from The Mathworks, Inc.

Example Implementation Using the MAX35103EVKIT2

The MAX35103EVKIT2 EV kit software was chosen for the initial implementation of the framework described in this app note. The
MAX35103EVKIT2 board consists of a MAX32620 (ARM Cortex M4) and MAX35103 (ultrasonic time-to-digital converter). Together, these
components enable the collection of liquid flow measurements through an ultrasonic flow body. These measurements are formatted and
transmitted to the host PC running MATLAB.

A basic understanding about the MAX35103EVKIT2 EV kit software and the MAX35103 is helpful to understand the data communicated
by the framework and the format of the host/target protocol packets. Refer to the MAX35103EVKIT2 documentation for details specific to
the embedded platform.

The data transmitted by the MAX35103EVKIT2 embedded target to the host PC running MATLAB is the output of the MAX35103 time-to-
digital converter. This data stream is an array of time measurements between ultrasonic-pulse ransmission and reception. The test.m
MATLAB script (detailed later in this document) offers a quick starting point for collecting data from the MAX35103EVKIT2 board. Figure 1
shows how to retrieve and access the first five upstream time measurements from the MAX35103EVKIT2 board.

®

®
® ® ®

®

Page 1 of 14

https://www.maximintegrated.com/en/
https://www.maximintegrated.com/en/products/MAX35103EVKIT2
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/products/MAX32620
https://www.maximintegrated.com/en/products/MAX35103
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

Figure 1. MATLAB data collection example using test.m.

System Architecture

Data collection using this framework requires a host PC capable of running MATLAB and a target embedded system with a serial
interface. The framework provided here specifically supports RS-232, but could easily be ported to support other interfaces (see Figure 2).

 Figure 2. Host/target architecture.

The framework spans both the PC host and the embedded target. C code is compiled for the target embedded system as well as the host
system. The current host implementation requires a Win32 platform, but this could be ported to another OS such as Linux .

The embedded target hardware must provide a serial interface of some kind. The current framework implementation supports UART but is
designed to be portable to other transports. The target microcontroller must have enough resources to support the framework data and
code requirements but also enough throughput to move data without excessively impacting the performance of the embedded system. An
RTOS is not required by the framework, but it does not preclude the use of one.

The current framework implementation was developed with a 96MHz Cortex-M4 processor and could move data across the UART at near
maximum throughput with little processor overhead. Smaller systems might require adjustments to the framework to work acceptably.

Figure 3 depicts the software components on both the host and the target. Components in blue are C-language modules that run on the
host. Components in red are C-language modules that run on the target. Components in green are common to both domains. MATLAB
scripts, in purple, are standard m-scripts that interface with an application-specific interface. The embedded framework implementation
described here is built to run on the MAX35103EVKIT2 EV kit software, an ultrasonic water-flow measurement platform.

Components in grey are external platform-specific components.

®

Page 2 of 14

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

Figure 3. System architecture.

C/C++ and 4GL languages that can interface with Win32 DLLs, like C# or Python, are supported using the "Win32 DLL I/F" module. This
allows for easy support of a custom host application that might not require MATLAB.

The "COM" module implements the base host/target protocol. This is where the data packet definitions specific to the embedded
application are found. The "Serialize" module implements escape-based packetization of binary data. Both modules are easily portable
using callbacks that interface with communication APIs (host) or embedded peripherals (embedded target).

The definitions in the "COM" module drive the implementations in the "Host-Side Protocol" and the "Device-Side Protocol" components.
These implementations are where commands/responses specific to the host and target are implemented and generally have a lot of
commonality.

The following sections detail each major architectural module from top to bottom beginning with the host.

PC Host Architecture

The host side of the architecture depicted in Figure 2 consists primarily of MATLAB and OS-specific interfaces, and is described in detail
in the following sections.

MATLAB Scripts

At the top of the host stack are the MATLAB scripts that perform application specific data collection and control. The script test.m, show
in Code Listing 1, is a simple example of how to use the MATLAB MEX interface to open, set parameters, and collect data from the
MAX35103EVKIT2 EV kit software.

h_flow = svflow('open',6);
if(h_flow)
 svflow('start',h_flow,100);
 samples = flow('get_samples',h_flow,1000);
 svflow('stop',h_flow);
 svflow('close',h_flow);
 clear h_flow;
 plot(samples.timestamp,samples.toff_diff)

Page 3 of 14

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

 hold on
 transit = (samples.up.average + samples.down.average) ./ 2
 yyaxis right
 plot(samples.timestamp,transit)
 hold off
else
 error('failed to open com port');
end

Code Listing 1. test.m.

Only one public function can exist in a MEX interface module. In this case, it is svflow(). This function is how MATLAB scripts call into the
MEX module. The name of the function is arbitrary, but 'svflow' was chosen as the moniker for the overall host/target protocol as
implemented on the MAX35103EVKIT2 EV kit software (a water flow measurement platform).

The first argument to svflow() is a text string that indicates a subfunction to call. The second argument is the object handled referencing a
specific flow object. This object is returned by svflow('open',...). This is the basic method that the framework uses to accommodate MEX
while supporting an object-oriented architecture.

The test.m script in Code Listing 1, calls the subfunction 'open' to open COM6 on the Windows host machine. Next, 'start' is called to
specify a sample rate of 100Hz and begin sample collection. 'get_samples' is then called to collect 1000 samples at the defined sampling
rate. When this synchronous collection is complete, the flow object is stopped and closed. The MATLAB plot() function is used to display
the data set and derived data.

MATLAB MEX Interface

The MATLAB MEX interface component for the MAX35103EVKIT2 EV kit software is implemented in a set of C-language files. It has
access to internal MATLAB functions and exposes a standard interface that MATLAB scripts can call. All MEX-specific functionality is
contained in mex.c, which provides a MATLAB-specific wrapper to the core protocol functionality implemented in flow.c that also serves as
the Win32 DLL interface and serialize.c/com.c that are common to the host and the embedded target.

The module is created by using the MATLAB mex() function. The compile.m script in Code Listing 2 compiles the host C files into a form
usable by MATLAB. The output of this command is the MATLAB MEX executable file. MATLAB must have been previously configured to
use a native toolchain. Go to The Mathworks website for information about how to set up a toolchain for compiling MEX modules.

mex -g -output svflow -I'dll' -I'..' dll/mex.c dll/svflow.c ../serialize.c ../com.c

Code Listing 2. compile.m.

The MATLAB MEX interface specific to the MAX35103EVKIT2 EV kit software are implemented in mex.c. MATLAB requires all MEX
modules to implement the function mexFunction() as the sole interface to the functionality provided by the module. To provide a way for a
single MEX module to provide multiple object-oriented member functions, a subfunction mechanism is used. In Code Listing 3,
mexFunction() references a function call table is used to dispatch subfunctions. The call table itself is shown in Code Listing 4.

for (i = 0; i < ARRAY_COUNT(s_function_table); i++)
{
 if (!lstrcmpA(s_function_table[i].p_name, func))
 {
 s_function_table[i].p_func(nlhs, p_lhs, nrhs - 1, p_rhs + 1);
 return;
 }
}

Code Listing 3. mexFunction() subfunction dispatch.

static const function_table_t s_function_table[] =
{
 { "get_samples", mex_get_samples },
 { "open", mex_open },

Page 4 of 14

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

 { "close", mex_close },
 { "start", mex_start },
 { "stop", mex_stop }
};

Code Listing 4. subfunction call table.

The mex_* functions referenced in the call table are thin wrappers to the Win32 DLL functions detailed in the next section.

The MATLAB MEX interface also formats the data received by the embedded target in a form compatible with the double-matrix-oriented
nature of MATLAB. The top-level object returned by the MATLAB MEX Interface is a MATLAB struct with the following fields:

 Figure 4. Top-level MATLAB data object.
The size of the double arrays timestamp and toff_diff is variable.

The up and down members are MATLAB structs with the following format:

Figure 5. MATLAB struct containing MAX35013 time measurements.

Again, the length of each array is variable. This data corresponds directly with the data output by the MAX35103 on the
MAX35103EVKIT2 evaluation board.

In mex.c, the function mex_get_samples() formats the data received by the embedded target using MATLAB mx* functions.

Page 5 of 14

 char * sample_fieldnames[] =
 {
 "timestamp",
 "up",
 "down",
 "toff_diff"
 };
 svflow_sample_t sample;
 void **pp = (void*)mxGetData(p_rhs[0]); uint32_t sample_count = (uint32_t)mxGetScalar(p_rhs[1]);
 mxArray *p_sample_struct = mxCreateStructMatrix(1, 1, ARRAY_COUNT(sample_fieldnames), sample_fieldnames);
 mxArray *p_timestamp = mxCreateNumericMatrix(1, sample_count, mxDOUBLE_CLASS, mxREAL);
 mxSetField(p_sample_struct, 0, "timestamp", p_timestamp);
 mxSetField(p_sample_struct, 0, "up", create_direction_struct(sample_count, &sample.up));
 mxSetField(p_sample_struct, 0, "down", create_direction_struct(sample_count, &sample.down));
 mxArray *p_toff_diff = mxCreateNumericMatrix(1, sample_count, mxDOUBLE_CLASS, mxREAL);
 mxSetField(p_sample_struct, 0, "toff_diff", p_toff_diff);
 sample.p_timestamp = (double_t*)mxGetData(p_timestamp);
 sample.p_tof_diff = (double_t*)mxGetData(p_toff_diff);
 svflow_get_samples(*pp, &sample, sample_count);
 p_lhs[0] = p_sample_struct;
}

Code Listing 5. mex_get_samples() in mex.c.

The 'up' and 'down' struct members are constructed in the create_direction_struct() function in mex.c.

Win32 DLL Interface

The Win32 DLL interface is implemented in svflow.c, which also contains the much of the protocol and platform specific code. The source
code package associated with this app note contains a Visual Studio project that can be used to build the DLL. However, MATLAB does
not require the DLL. It is provided simply to aid those interested in writing custom data-analysis code in a language that can interface with
DLLs.

Code Listing 6 below shows the DLL-interface function supported by the MAX35103EVKIT2 EV kit software. The functions correspond
exactly to the subfunctions called in the MATLAB script shown in Code Listing 1.

void* svflow_open(uint32_t comport);
void svflow_close(void *pv_context);
uint32_t svflow_get_samples(void *pv_context, flow_sample_t
*p_flow_sample, uint32_t sample_count);
void svflow_start(void *pv_context, float_t sample_rate_hz);
void svflow_stop(void *pv_context);

Code Listing 6.- flow.h.

svflow_open ()returns an opaque flow communications context object associated with the given Win32 COM port or NULL if an error
occurred.

svflow_close() closes communications and frees resources using the context object returned by svflow_open().

svflow_start() tells the embedded target to begin collecting flow samples at the specified sampling rate.

svflow_stop() tells the embedded target to end data collection.

While these functions are specific to the MAX35103EVKIT2 EV kit software, they could easily be replaced by functions appropriate to other
embedded applications.

Host Protocol

The protocol used by the host and the embedded target are built on common definitions and functions in com.c/h and serialize.c/h.

®

Page 6 of 14

static void mex_get_samples(int nlhs, mxArray *p_lhs[], int nrhs, const mxArray *p_rhs[])
{

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

Protocols supported by the architecture generally consist of command/response and indication events. The host protocol is implemented in
svflow.c with dependences on com.c and serialize.c, which are common to the host and the embedded target.

The host-side protocol uses com_* functions to issue commands and decode responses and indications. For example, in Code Listing 6,
com_tx() is used to send a 'com_host_start_sampling_t' command packet to the embedded target.

It is important to note that all protocol functions are singled-threaded blocking calls.

void svflow_start(void *pv_context, float_t sample_rate_hz)
{
 context_t *p_context = (context_t*)pv_context;
 if(p_context)
 {
 com_host_start_sampling_t cmd;
 cmd.sample_rate_hz = sample_rate_hz;
 com_tx(&p_context->com, &cmd, COM_ID_HOST_START_SAMPLING,
 sizeof(com_host_start_sampling_t));
 }
 }

Code Listing 7. flow_start() in flow.c.

The host protocol module also defines data types that correspond with data types that transit the communications link, but are not identical
to them. This difference allows some useful decoupling of the data types required by this module and the modules above. Specifically, it
decouples the packet format (concise, single precision floats) from the data format used to accommodate MATLAB (verbose, matrix-
oriented doubles). This means that translation code must exist in flow.c as can be seen in the serialize callback function in Code Listing
7.

static bool serialize_cb(void *pv_context, const void *pv_data, uint16_t length)
{
 context t * p_context = (context_t *)pv_context;
 const com_union_t *p_packet = (const com_union_t*)pv_data;
 if (p_packet->hdr.id == COM_ID_DEVICE_FLOW_SAMPLE)
 {
 com_device_flow_sample_t *p_com_sample =
 (com_device_flow_sample_t*)&p_packet->flow_sample;
 if (!p_context->sample_ndx)
 {
 p_context->time_offset = p_com_sample->timestamp;
 }
 svflow_sample_t *p_flow_sample = p_context>p_flow_sample;
 uint32_t ndx = p_context->sample_ndx;
 direction(&p_flow_sample->up, &p_com_sample->up, ndx);
 direction(&p_flow_sample->down, &p_com_sample->down, ndx);
 p_flow_sample->p_timestamp[ndx] = ((double_t)(p_com_sample->timestamp –
 p_context->time_offset)) / 96000000.0;
 p_flow_sample->p_tof_diff[ndx] = p_com_sample->tof_diff;
 p_context->sample_ndx++;
 if(p_context->sample_ndx >= p_context->sample_count)
 return true;
 }
 return false;
}

Code Listing 8. Data translation in flow.c.

svflow.c also contains initialization and callback functions required to use comports on a Win32 platform as seen in Code Listing 8.

Page 7 of 14

static uint16_t uart_write(com_t *p_com, void *pv, uint16_t length)
{
 DWORD written;
 context_t *p_context = (context_t*)p_com;
 WriteFile(p_context->hComm, pv, length, &written, NULL);
 return (uint16_t)written;
}
static uint16_t uart_read(com_t *p_com, void *pv, uint16_t length)
{
 DWORD read;
 context_t *p_context = (context_t*)p_com;
 ReadFile(p_context->hComm, pv, length, &read, NULL);
 return (uint16_t)read;
}

Code Listing 9. Win32 serial port callbacks in flow.c.

The COM module implements the routines that abstract the serial transport. com_init() initializes the abstraction object and com_read() is
called to deserialize and dispatch specific commands/responses and indications.

Embedded Target Architecture

The embedded target architecture is conceptually simple and mirrors the host-side architecture excluding the platform and MATLAB
specific components.

The embedded application contains functions that support the host side svflow_* calls defined in svflow.c. These functions include
callbacks and configuration specific to the MAX35103EVKIT2 and can be found in board.c.

Like the comport abstraction on the host side, the embedded target has serial-port callbacks as can be seen in Code Listing 9. The read
callback calls a chip support library (CSL) function call to write length bytes to the UART. The return value is the number of bytes actually
written. The read callback uses a CSL-function call to read all bytes currently available (up to length) on the port.

static uint16_t uart_write(com_t * p_com, void * pv, uint16_t length)
{
 return UART_Write(MXC_UART0, (uint8_t *)pv, length);
}
static uint16_t uart_read(com_t * p_com, void * pv, uint16_t length)
{
 return UART_Read(MXC_UART0, (uint8_t *)pv, length, NULL);
}

Code Listing 10. Serial port callbacks in main.c.

The COM module is used by the embedded target to dispatch commands from the host. com_read() is called from the main plication loop
and commands are dispatched in serialize_cb(), which is listed in Code Listing 10.

main.c contains the entirety of the embedded application for flow measurement on the MAX35103EVKIT2 EV kit software and uses the
max3510x.c module to interface with the MAX35103 chip. Board.c contains board specific initialization and interrupt dispatch code.

Although this example implementation is specific to the MAX35103EVKIT2 EV kit software, the COM and serialize modules are not
platform specific and could be easily ported to most modern microcontrollers and board designs.

Page 8 of 14

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

 if(p_com->start_sampling.sample_rate_hz > 0.0F &&
 p_com->start_sampling.sample_rate_hz <= 200.0F)
 {
 s_sampling_underflow = 0;
 s_sampling_overrun = 0;
 s_sample_state = sample_state_idle;
 s_send_samples = true;
 SYS_SysTick_Config((uint32_t)((float_t)SYS_SysTick_GetFreq() /
 p_com>start_sampling.sample_rate_hz), 1);
 }
 break;
 }
 case COM_ID_HOST_STOP_SAMPLING:{
 {
 SYS_SysTick_Config((uint32_t)((float_t)SYS_SysTick_GetFreq() / 10.0F), 1);
 s_send_samples = false;
 break;
 }
 }
 return false;
}

Code Listing 11. Serialize_cb in main.c.
Software Package Contents

The target firmware and Windows host software can be downloaded from the Maxim website. It is provided as a zip archive. Extract the
archive to a convenient directory on your computer. Figure 6 shows the directory structure of the target firmware and host software
implementation.

®

Page 9 of 14

static bool serialize_cb(void *pv_context, const void *pv_packet, uint16_t length)
{
 const com_union_t *p_com = (const com_union_t*)pv_packet;
 switch(p_com->hdr.id)
 {
 case COM_ID_HOST_START_SAMPLING:
 {

Figure 6. Software directory structure.

The root directory contains main()and the COM and Serialize modules. Additionally, transducer.c/h contains parameters specific to the
ultrasonic transducers that come with the MAX35103EVKIT2 EV kit software.

The board directory contains a subdirectory for each board supported by the MATLAB example firmware application. Support for custom
user boards could be added here.

The csl and MAX3510x directories contain code specific to the microcontroller and peripherals on the MAX35103EVKIT2 EV kit software.

The IAR directory contains the project files used to build and debug the firmware on the MAX35103EVKIT2 EV kit software. New project
configurations could be added to support custom user boards. The easiest way to do this would be to copy the configuration and then
modify it to suit the new target.

The host and dll directories contain all the source necessary to build the Win32 DLL and MEX interface modules. Also available are the
MATLAB scripts to compile the MEX interface module alongside the test script detailed in Code Listing 1.

Building the Target Firmware

The MATLAB example firmware can be built using IAR ARM. The IAR project file is in the iar directory. Once you load the project, be sure
to check that your debugger is configured correctly (see Figure 4). The microcontroller on the MAX35103EVKIT2 EV kit software can be
programmed with any ARM JTAG adapter supported by IAR using the 10-pin ARM header (J1).

Page 10 of 14

https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A
https://www.maximintegrated.com/en/design/software-description.html/swpart=SFW0000330A

 Figure 7. IAR debugger options.

Project.out is the firmware image created when the project is built.

Page 11 of 14

 Figure 8. Building the firmware with IAR.

Building the Host Software

The MATLAB MEX interface can be built from within MATLAB using the compile.m script located in the host directory as depicted in
Figure 6. The output of the build is flow.mexw64.

To use compile.m, you must have a MATLAB-supported C compiler installed. Go to The Mathworks website for details as this can
change from one version of MATLAB to the next.

At the time of this writing, the free version of Microsoft Visual C++ can be used by MATLAB 2016a to generate MEX files.

Page 12 of 14

 Figure 9. Building the MEX interface.

The host software can also be built into a DLL module for use by non-MATLAB programs that know how to talk to DLLs. C# and Python
applications (among others) can be supported in this way. The Microsoft Visual C++ project files to build a DLL can be found in the

dll

directory.

Hardware Configuration

The MAX35103EVKIT2 PCB must be connected to the ultrasonic flow body as described in the MAX35103EVKIT2 EV kit data sheet.
Figure 10 shows the connections available on the MAX35103EVKIT2 PCB.

POWER should be connected to a 6-24V AC or a DC source capable of supplying 200mA.
VALVE can be left unconnected.
PIEZO UP± should be connected to one of the flow body transducers
PIEZO DOWN± should be connected to the other flow body transducer.
RTD/THERMISTOR can be left unconnected.

The rotary switches are not used by the firmware.

 Figure 10. MAX35103EVKIT2 J12 pinout.

Page 13 of 14

https://www.maximintegrated.com/en/products/MAX35103EVKIT

software architecture that can be used to get the data into MATLAB without the cost and complexity of commercially available add-on
modules.

IAR and IAR Embedded Workbench are registered trademarks of IAR Systems AB.
Linux is a registered trademark of Linus Torvalds.
MATLAB is a registered trademark of The MathWorks Inc.
Visual C++, Visual Studio, and Win32 are registered trademarks of Microsoft Corporation.

Related Parts

MAX32600 Wellness Measurement Microcontroller Free Samples

MAX32620 High-Performance, Ultra-Low Power Arm Cortex-M4 with FPU-Based
Microcontroller for Rechargeable Devices

Free Samples

MAX32621 High-Performance, Ultra-Low Power Arm Cortex-M4 with FPU-Based
Microcontroller for Rechargeable Devices

Free Samples

MAX32625 Ultra-Low Power, High-Performance ARM Cortex-M4 with FPU-Based
Microcontroller for Wearables

Free Samples

MAX32626 Ultra-Low Power, High-Performance ARM Cortex-M4 with FPU-Based
Microcontroller for Wearables

Free Samples

MAX32630 Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for
Wearables

Free Samples

MAX32631 Ultra-Low Power, High-Performance Cortex-M4F Microcontroller for
Wearables

Free Samples

MAX35102 Time-to-Digital Converter Without RTC Free Samples

MAX35103 Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash Free Samples

MAX35103EVKIT2 Evaluation Kit for the MAX35103/MAX32620

MAX35104 Gas Flow Meter SoC Free Samples

More Information
For Technical Support: https://www.maximintegrated.com/en/support
For Samples: https://www.maximintegrated.com/en/samples
Other Questions and Comments: https://www.maximintegrated.com/en/contact

Application Note 6385: https://www.maximintegrated.com/en/an6385
APPLICATION NOTE 6385, AN6385, AN 6385, APP6385, Appnote6385, Appnote 6385
© 2014 Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this
content, contact us.
Additional Legal Notices: https://www.maximintegrated.com/en/legal

Conclusion

MATLAB provides a great platform for data analysis and algorithm development. This application note describes a simple, customizable

Page 14 of 14

https://www.maximintegrated.com/en/products/MAX32600
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32600
https://www.maximintegrated.com/en/products/MAX32620
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32620
https://www.maximintegrated.com/en/products/MAX32621
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32621
https://www.maximintegrated.com/en/products/MAX32625
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32625
https://www.maximintegrated.com/en/products/MAX32626
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32626
https://www.maximintegrated.com/en/products/MAX32630
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32630
https://www.maximintegrated.com/en/products/MAX32631
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX32631
https://www.maximintegrated.com/en/products/MAX35102
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX35102
https://www.maximintegrated.com/en/products/MAX35103
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX35103
https://www.maximintegrated.com/en/products/MAX35103EVKIT2
https://www.maximintegrated.com/en/products/MAX35103
https://www.maximintegrated.com/en/products/MAX32620
https://www.maximintegrated.com/en/products/MAX35104
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX35104
https://www.maximintegrated.com/en/support
https://www.maximintegrated.com/en/samples
https://www.maximintegrated.com/en/contact
https://www.maximintegrated.com/en/an6385
https://support.maximintegrated.com/tech_support/submit_question.mvp?pl_id=0
https://www.maximintegrated.com/en/legal

	maximintegrated.com
	How to Collect Data from an Embedded System for Use in MATLAB - Application Note - Maxim

