IGBT for PFC Applications 650 V, 50 A, TO-247-3L

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.6 \text{ V (Typ.)}$ @ $I_C = 50 \text{ A}$
- 100% of the Parts Tested for ILM (Note 1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- RoHS Compliant

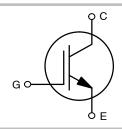
Typical Applications

• Solar Inverter, UPS, Welder, Telecom, ESS, PFC

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Collector-to-Emitter Voltage		V _{CES}	650	V
Gate-to-Emitter Voltage	V_{GES}	±20	V	
Transient Gate-to-Emitter Voltage	V_{GES}	±30	٧	
Collector Current	T _C = 25°C	Ic	100	Α
	T _C = 100°C		50	
Pulsed Collector Current (Note 2)	T _C = 25°C	I _{CM}	200	Α
Maximum Power Dissipation T _C = 25°C		P _D	268	W
$T_C = 100^{\circ}C$			134	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C
Maximum Lead Temperature for Soldering Purposes (1/8" from case for 5 s)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 200 A, Inductive Load 2. Repetitive rating: Pulse width limited by max. Junction temperature
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted

ON Semiconductor®

www.onsemi.com

BV _{CES}	V _{CE(sat)} TYP	I _C MAX
650 V	1.6 V	200 A

TO-247 LONG LEADS CASE 340CX

MARKING DIAGRAM

= ON Semiconductor Logo

&Z = Assembly Plant Code &3 = 3-Digit Date Code

\$Y

= 2-Digit Lot Traceability Code

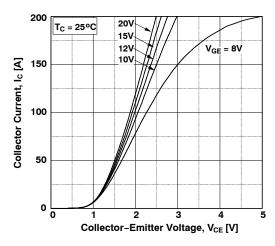
FGHL50T65SQ = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGHL50T65SQ	TO-247-3L	30 Units / Rail

Table 1. THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State	$R_{ heta JC}$	0.56	°C/W
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	40	


^{4.} Repetitive rating: Pulse width limited by max. Junction temperature

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-			
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	650			V
Temperature Coefficient of Breakdown Voltage	$\Delta V_{CES} / \Delta T_{J}$	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$		0.6		V/°C
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V			250	μΑ
G-E Leakage Current	I _{GES}	$V_{GE} = V_{GES}$, $V_{CE} = 0 V$			±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 50 \text{ mA}$	2.6	4.5	6.4	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 50 \text{ A}, V_{GE} = 15 \text{ V T}_C = 25^{\circ}\text{C}$		1.6	2.1	V
		I _C = 50 A, V _{GE} = 15 V T _C = 175°C		1.92		V
DYNAMIC CHARACTERISTIC						
Input Capacitance	Cies	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz		3209		pF
Output Capacitance	Coes			42		
Reverse Transfer Capacitance	Cres			12		
SWITCHING CHARACTERISTIC						
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 400 \text{ V}, I_{C} = 25 \text{ A},$		19		ns
Rise Time	t _r	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$		13		ns
Turn-Off Delay Time	t _{d(off)}	FWD: FGH50T65SQD		93		ns
Fall Time	t _f			6.4		ns
Turn-On Switching Loss	E _{on}			410		μJ
Turn-Off Switching Loss	E _{off}			88		μJ
Total Switching Loss	E _{ts}			498		μJ
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 400 \text{ V}, I_{C} = 25 \text{ A},$		18		ns
Rise Time	t _r	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 175^{\circ}C$		15		ns
Turn-Off Delay Time	t _{d(off)}	FWD: FGH50T65SQD		102		ns
Fall Time	t _f			8		ns
Turn-On Switching Loss	E _{on}			641		μJ
Turn-Off Switching Loss	E _{off}			203		μJ
Total Switching Loss	E _{ts}			844		μJ
Total Gate Charge	Q_g	V _{CE} = 400 V, I _C = 50 A, V _{GE} = 15 V		99		nC
Gate-to-Emitter Charge	Q _{ge}	V _{GE} = 15 V		17		nC
Gate-to-Collector Charge	Q _{gc}			23		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. Typical Output Characteristics

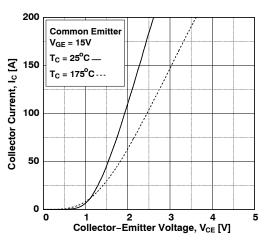


Figure 3. Typical Saturation Voltage Characteristics

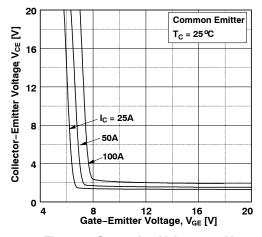


Figure 5. Saturation Voltage vs. V_{GE}



Figure 2. Typical Output Characteristics

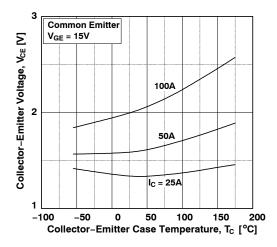


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

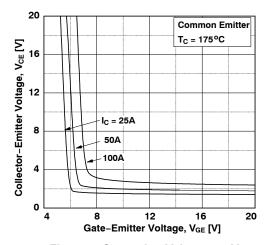


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL CHARACTERISTICS

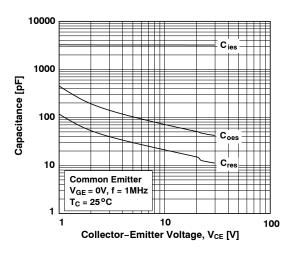


Figure 7. Capacitance Characteristics

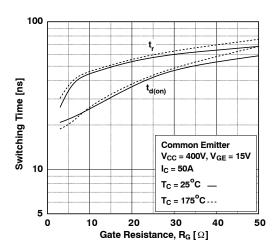


Figure 9. Turn-on Characteristics vs. Gate Resistance

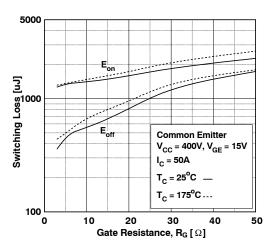


Figure 11. Switching Loss vs. Gate Resistance

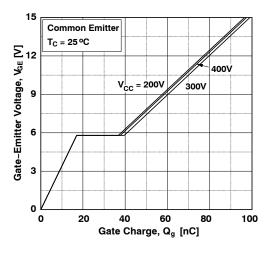


Figure 8. Gate Charge Characteristics

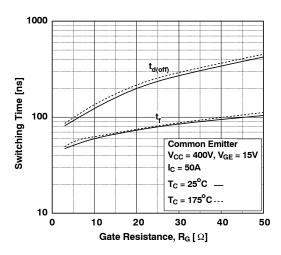


Figure 10. Turn-off Characteristics vs. Gate Resistance

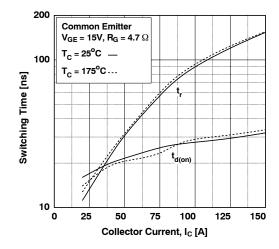


Figure 12. Turn-on Characteristics vs.
Collector Current

TYPICAL CHARACTERISTICS

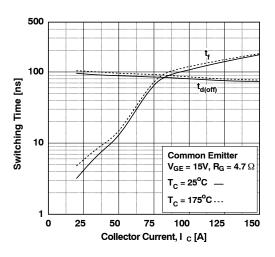


Figure 13. Turn-off Characteristics vs. Collector Current

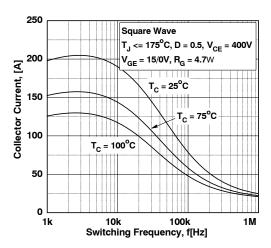


Figure 15. Load Current vs. Frequency

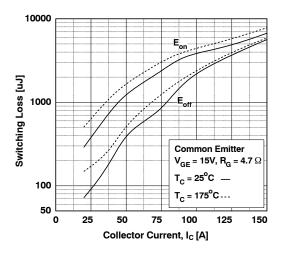


Figure 14. Switching Loss vs. Collector Current

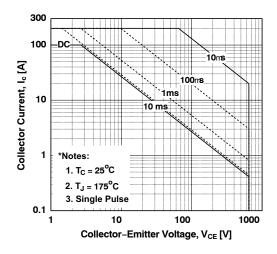


Figure 16. SOA Characteristics

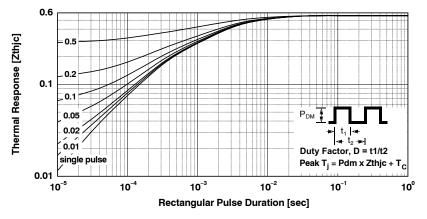
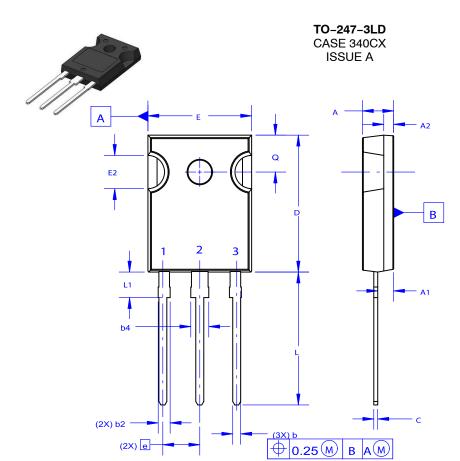
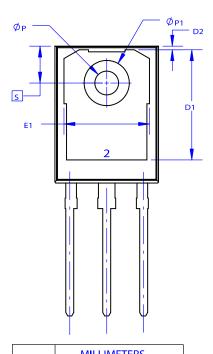
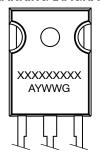




Figure 17. Transient Thermal Impedance of IGBT

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " =", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
Ø P 1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales